Multiple Choice Identify the
choice that best completes the statement or answers the question.
|
|
1.
|
The binary addition of 0 + 1
=
a. | sum = 1 carry =
1 | b. | sum = 1 carry =
0 | c. | sum = 0 carry =
0 | d. | sum = 0 carry =
1 |
|
|
2.
|
The binary addition of 1 + 0
=
a. | sum = 0 carry =
0 | b. | sum = 1 carry =
1 | c. | sum = 1 carry =
0 | d. | sum = 0 carry =
1 |
|
|
3.
|
The binary addition of 1 + 1
=
a. | sum = 1 carry =
0 | b. | sum = 0 carry =
1 | c. | sum = 0 carry =
0 | d. | sum = 1 carry =
1 |
|
|
4.
|
The binary addition of 1 + 0 +
0 =
a. | sum = 1 carry =
1 | b. | sum = 0 carry =
1 | c. | sum = 0 carry =
0 | d. | sum = 1 carry =
0 |
|
|
5.
|
The binary addition of 1 + 1 +
0 =
a. | sum = 0 carry =
1 | b. | sum = 0 carry =
0 | c. | sum = 1 carry =
0 | d. | sum = 1 carry =
1 |
|
|
6.
|
The binary addition of 1 + 1 +
1 =
a. | sum = 1 carry =
1 | b. | sum = 1 carry =
0 | c. | sum = 0 carry =
1 | d. | sum = 0 carry =
0 |
|
|
7.
|
Solve this binary
problem: 0110 + 0011
|
|
8.
|
Solve this binary
problem: 1000
+1001
a. | 11001 | c. | 1111 | b. | 10001 | d. | 10111 |
|
|
9.
|
Solve this binary
problem: 1111
+1001
a. | 1111 | c. | 11000 | b. | 11111 | d. | 10111 |
|
|
10.
|
Solve this binary
problem: 00010111
+00101001
a. | 00101111 | c. | 01000000 | b. | 01100000 | d. | 00110011 |
|
|
11.
|
Solve this binary
problem: 0110
-0010
|
|
12.
|
Solve this binary
problem: 1000
-0001
|
|
13.
|
Solve this binary
problem: 0011
-0001
|
|
14.
|
Solve this binary
problem: 1011
-0101
|
|
15.
|
Without performing any binary-to-decimal conversions, which of the following
binary numbers must be -49?
a. | 00110001 | c. | 11001111 | b. | 01100110 | d. | 01001111 |
|
|
16.
|
What is the one’s complement of the binary number 
|
|
17.
|
What is the one’s complement of the binary number 
a. | 10000000101 | c. | 10101110110 | b. | 10001110101 | d. | 10001110111 |
|
|
18.
|
Calculate the 2’s complement of the following binary
number: 1001101
a. | 0110010 | c. | 1001110 | b. | 0110011 | d. | 0110100 |
|
Matching
|
|
|
Match the following decimal numbers as their 8-bit 2’s complement binary
equivalent.
|
|
19.
|
01010111
|
|
20.
|
10011111
|
|
21.
|
11001111
|
|
22.
|
01110010
|
|
23.
|
10010100
|
|
|
Match the following 8-bit 2’s complement binary numbers as their decimal
equivalent.
a. | 11011001 | d. | 10111101 | b. | 01110100 | e. | 00011011 | c. | 10110001 |
|
|
24.
|
116
|
|
25.
|
-67
|
|
26.
|
-79
|
|
27.
|
27
|
|
28.
|
-39
|